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Abstract

Air flowing past a solid surface will stick to that surface. This phenomenon caused by viscosity. This
condition states that the velocity of the fluid at the solid surface equals the velocity of that surface.
The result of this condition is that a boundary layer is formed in which the relative velocity varies
from zero at the wall to the value of the relative velocity at some distance from the wall. The goal
of the present research is to study the boundary layer characteristics over a flat plate theoretically
and experimentally. The studied parameters were the mass flow rate ratio, the distance from the
plate leading edge and the surface type i.e. smooth and roughness. All the experiments were carried
in the fluid mechanics laboratory at College of Engineering Technology – Hoon, Libya. The results
show that the boundary layer thickness over smooth surface is higher than that in the rough surface
condition. The boundary layer thickness was found to be increases with the increase of both mass
flow rate ratio and downstream distance (i.e. distance from the leading edge). Good agreement was
obtained between experimental and theoretical results of laminar flow over the flat plate.

Keywords: Boundary layer thickness; mass flow rate ratio; smooth surface; Rough surface, Leading
edge.

1. Introduction

A boundary layer is the thin region of flow adja-
cent to a surface , the layer in which the flow is
influenced by the friction between the solid sur-
face and the fluid. The boundary layer thickness
denoted by the symbol (δ). The theory that de-
scribed the flow over surfaces and bodies assuming
the flow to be inviscid, incompressible and irrota-
tional – and on the other hand there was the field
of hydraulics which was a mainly experimental
field concerning the behaviour of fluids in machin-
ery like pipes. Boundary layer theory playing a
major rule in aerodynamics (airplanes, rockets,
projectiles), hydrodynamics (ships, submarines,
torpedoes), transportation (automobiles, trucks,
cycles), wind engineering (buildings, bridges, wa-
ter towers), and ocean engineering (buoys, break-

waters, cables).
The properties of a turbulent boundary layer were
investigated related to the drag for a two dimen-
sional fence by K. G. Ranga et.al.[1]. The mea-
surements were obtained at zero pressure gradient
of velocity profiles along smooth, rough and tran-
sitional flat plates. A simple formula for the dis-
placement thickness and the local shear coefficient
has been predicted. This formula was modified to
the universal velocity defect law for equilibrium
boundary layers. P.-å. Krogstad et.al [2] carried
measurements in a zero-pressure-gradient turbu-
lent boundary layer over a mesh-screen rough wall
indicate several differences, in both inner and outer
regions, in comparison to a smooth-wall boundary
layer. The mean velocity distribution indicates
that, apart from the expected k-type roughness
function shift in the inner region, the strength of
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the rough-wall outer region ‘wake’ is larger than
on a smooth wall. The Comparison between smooth
and rough-wall spectra of the normal velocity fluc-
tuation suggested that the strength of the active
motion may depend on the nature of the surface.
A. E. Perry et.al. [3], presented an experimental
study of turbulent boundary-layer development
over rough walls in both zero and adverse pressure
gradients. They chose two wall roughness geome-
tries each giving a different law of behavior on
the study . One type gives a Clauses type rough-
ness function which depends on a Reynolds num-
ber based on the shear velocity and on a length
associated with the size of the roughness. The
other type of roughness (typified by a smooth wall
containing a pattern of narrow cavities) .They in-
dicated that the corresponding roughness func-
tion does not depend on roughness scale, but de-
pends instead on the pipe diameter. The results
obtained for both types of roughness to be cor-
related with a Reynolds number based on the
wall shear velocity and on the distance below the
crests of the elements. The Levy-Lees form of the
laminar boundary layer equations was solved by
F.G. Blottner [4] with several second-order accu-
rate finite-difference schemes. The results of this
investigation show that the coupled continuity-
momentum form of the Crank-Nicolson scheme is
second-order with one iteration at each step and
requires less time than the Keller box scheme.
M. P. Schultz et.al. [5] were investigated the tur-
bulence measurements for rough-wall boundary
layers and the results then compared with smooth
wall boundary layer. The rough-wall experiments
were made on a three-dimensional rough surface
geometrically. The experiments covered a wide
Reynolds-number range ( 2180–27100). In this in-
vestigation, the root-mean-square roughness height
was at least three orders of magnitude smaller
than the boundary-layer thickness, and the Kár-
mán number (δ+), typifying the ratio of the largest
to the smallest turbulent scales in the flow , was
as high as 10100 . The results lend strong support
to the concept of outer layer similarity for rough
walls in which there is a large separation between
the roughness length scale and the largest turbu-
lence scales in the flow.
The structure of the flat plate incompressible smooth
surface boundary layer in a low-speed water flow
is examined by H. T. Kim et.al.[6] using hydrogen-
bubble measurements and also hot-wire measure-

ments with dye visualization. The results show
that, the velocity profiles during bursting peri-
ods assume a shape which is qualitatively distinct
from the well-known mean profiles.
A. E. Perry et.al. [7], investigated experimentally
the turbulence structure in smooth and rough wall
.The results for mean flow, turbulence intensity
and spectral data for both smooth and rough sur-
faces ,were supported for the attached eddy hy-
pothesis of Townsend (1976), the model for wall
turbulence proposed by Perry & Chong (1982)
and the extended version developed by Perry,
Henbest & Chong (1986).
The governing equations for a laminar flow were
solved by F.G. Blottner et.al.[8] in terms of an
orthogonal surface coordinate system. One of the
coordinate is determined by the intersection with
the body surface of meridional planes which pass
through an axis containing the stagnation point.
The other coordinate is obtained numerically from
the orthogonality condition. The momentum equa-
tions was replaced with a nonlinear finite-difference
equation which is solved as an iterative solution
of linear tridiagonal equations.Numerical calcula-
tions based on the compressible boundary-layer
equations and an integral form of the kinetic en-
ergy of turbulence (IKET) equation were inves-
tigated for a variety of conditions by Hodge, B.
K et.al.[9]. They concluded that the IKET-based
extended mixing-length hypothesis more flexible
than conventional mixing-length turbulence mod-
els.
Calculation of boundary layer development us-
ing the turbulent energy equation was studied by
P. Bradshaw et.al .[10] . The turbulent energy
equation was converted into a differential equa-
tion by defining three empirical functions relat-
ing the turbulent intensity, diffusion and dissipa-
tion to the shear stress profile. Calculation of
boundary layer development using the turbulent
energy equation ,compressible flow on adiabatic
walls was investigated by P. Bradshaw et.al [11].
The study was focused on the compressible flow
in two-dimensional boundary layers in arbitrary
pressure gradient . They pointed that, in super-
sonic flow, surface curvature which is large enough
to induce a significant longitudinal pressure gradi-
ent is also large enough to have a very significant
effect on the turbulence structure. A modified
Crank-Nicholson implicit finite difference formu-
lation was studied by W. F. Klinksiek et.al. [12]
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for two and three-dimensional turbulent bound-
ary layers. The turbulent stresses were treated
after Prandtl’s early mixing length model. The
specific empirical input is the Maise and McDon-
ald mixing length model.

2. Experimental Work

All the experiments were carried in the fluid me-
chanics laboratory at College of Engineering Tech-
nology – Hoon, Libya. The experiments were car-
ried using the air flow bench device.

2.1. Description of Apparatus of The Ex-
perimental

The experimental rig consists of the following main
parts:

• Centrifugal fan with specifications ( Type SC 8
×2 .50 with height and width of 27.5cm , and
30cm respectively, and power supply 220/240V
).

• Air intake section which designed in such away
the air flowing in a parallel streams.

• The pressure gauge fitted at the end of intake
section.

• The test section where the flat plate is installed.

• Measurement tools such oil manometers, pres-
sure gauge, and pitot tube.

Figure 2.1a shows the arrangement of the test sec-
tion attached to the outlet of the contraction of
the air flow bench .A flat plate is placed at mid
height of the section ,with a sharpened edge fac-
ing the oncoming flow. One side of the plate is
smooth and the other is rough so that by turning
the plate over, results may be obtained on both
types of surface. Figure 2.1b shows the photo of
the test rig used in this work.

2.2. Experimental Procedure
The flat firstly has to be fixed in its specified place
at the required leading edge, secondly the cen-
trifugal fan will be operated at adjustment mass
flow rate starting from highest percent ( ṁ/ṁmax
= 1.00 ) to the lowest value ( ṁ/ṁmax = 0.25 ).
Each mass flaw rate has a corresponding flow ve-
locity ( free steam velocity which denoted by the
symbol U∞. At each mass flow rate the leading

edge of the flat plate will be fixed at three dif-
ferent positions from the nose of the pitot tube.
The leading edge distances (x) were 130 mm, 180
mm and 230 mm. The pitot tube then will be ad-
justed at the surface of the plate that it touches
the surface of the flat plate. At the surface, the
flow velocity considered to be zero. The pitot tube
will be moved away from the surface in steps each
0.25 mm till reaching the free velocity zone. The
difference between the total head and static head
measured by a special oil manometer. For each
measurement a limited time from two to three
minutes has to be taken to reach the stability at
the oil manometer heads. The results of all ex-
perimental work are shown in figures [4-7].

3. Theoretical Work

This section deals with converting the boundary
layer equations in the form of partial differential
equations into finite difference scheme. By using
the Crank Nicolson method, the boundary layer
equations were solved by using Matlab program-
mer. The laminar boundary layer equations for
both compressible and incompressible fluid flow
along the flat plate were solved theoretically. The
theoretical results were compared with the exper-
imental results for incompressible laminar bound-
ary layer on flat plate.

3.1. Finite Differences
Finite differences procedure used to solve a PDE.
A finite difference procedure is presented for solv-
ing coupled sets of partial differential equations.
For one dependent variable, the procedure con-
sists of replacing a single unknown at multiple
grid points with the concept of a line of node
points with multiple unknowns at each node point.
The process is illustrated first for a second or-
der, linear elliptic partial differential equation and
then for a coupled set of non-linear elliptic par-
tial differential equations. The procedure could
be extended to include three spatial coordinates
and time, suppose that we wish to solve PDE for
which u(x , y) is the dependent variable, where
the square domain 0≤ x ≤1, 0≤ y ≤1 . A grid
was established on the domain by replacing u(x ,
y) by u(iΔx, jΔy). Points can be located accord-
ing to values of i and j ,so difference equations are
usually written in terms of the general point (i ,
j) and its neighbors .This labeling is illustrated in
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(a) Test section (b) Photo graph of used test rig

Figure 2.1: Apparatus of the experimental

Figure 3.1. Thus ,if we think of ui , j as u(x0, y0),
then,
ui+1,j = u(x0 + ∆x, y0), ui−1,j = u(x0 −∆x, y0)
ui,j+1 = u(x0, y0 + ∆y), ui,j−1 = u(x0, y0 −∆y)

Figure 3.1: Typical finite difference grid

Most of the PDEs arising in fluid mechanics and
heat transfer involve only first and second partial
derivatives , and generally , we strive to represent
these derivatives using values at only two or three
grid points . Within these restrictions, the most
frequently used first-derivative approximations on
grid for which Δx = const. are:

• The forward finite-difference:(
∂u

∂x

)
i,j

=
ui+1,j − ui,j

∆x
(3.1)

• The backward finite-difference:(
∂u

∂x

)
i,j

=
ui,j − ui−1,j

∆x
(3.2)

• The central finite-difference:(
∂u

∂x

)
i,j

=
ui+1,j − ui−1,j

2∆x
(3.3)

• The derivatives using values at three grid points:(
∂u

∂x

)
i,j

=
−3ui,j + 4ui+1,j − ui+2,j

2∆x
(3.4)

(
∂u

∂x

)
i,j

=
3ui,j − 4ui+1,j + ui+2,j

2∆x
(3.5)

The most common three-point second-derivative
approximations for a uniform grid, Δx = const,
are :

(
∂2u

∂x2

)
i,j

=
ui,j − 2ui+1,j + ui+2,j

(∆x)
2 (3.6)

(
∂2u

∂x2

)
i,j

=
ui,j − 2ui−1,j + ui−2,j

(∆x)
2 (3.7)

(
∂2u

∂x2

)
i,j

=
ui+1,j − 2ui,j + ui−2,j

(∆x)
2 (3.8)

3.2. Laminar Boundary Layer Equations in
Finite Difference for Incompressible
Flow

The assumption of incompressible laminar steady
flow are ( the speed V<100 m/s or M<0.3 , where
M is the Mach number, constant density and Re
< 5×105 ).

Momentum Equation:

u
∂u

∂x
+ υ

∂u

∂y
= ue

∂ue
∂x

+ υ
∂2u

∂y2
(3.9)
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[
θun+1

j + (1− θ)unj
] (
un+1
j − unj

)
∆x

+[
θυn+1

j

(
un+1
j+1 − u

n+1
j−1

)
+ (1− θ) υnj

]
unj+1 − unj−1

2∆y

=

[
θun+1

e + (1− θ)une
] (
un+1
e − une

)
∆x

+
υ

(∆y)
2 [θ
(
un+1
j+1 − 2un+1

j + un+1
j−1

)
+ (1− θ)

(
unj+1 − 2unj + unj−1

)
]

(3.10)
For flat plate

(
∂ue

∂x = 0
)

Where θ is weighting factor if:

= 0 (Method is explicit).

= 1/2 (Crank-Nicolson implicit).

= 1 ( Fully implicit).

Continuity Equation:

∂u

∂x
+
∂υ

∂y
= 0 (3.11)

υn+1
j − υn+1

j−1

∆y
+
un+1
j − unj + un+1

j−1 − unj−1

2∆x
= 0

(3.12)

Momentum Equation:

u
∂u

∂x
+ υ

∂u

∂y
= ue

∂ue
∂x

υ
∂2u

∂y2
(3.13)

[
θunj + (1− θ)unj

] (
un+1
j − unj

)
∆x

+[
θυn+1

j

(
un+1
j+1 − u

n+1
j−1

)
+ (1− θ) υnj

]
2∆y

∗
(
unj+1 − unj−1

)
=

[θune + (1− θ)une ]
(
un+1
e − une

)
∆x

(3.14)

Bn
j u

n+1
j−1 +Dn

j u
n+1
j +An

j u
n+1
j+1 = Cn

j (3.15)

Where,

Dn
j =

unj
∆x

+
2υθ

(∆y)
2 (3.16)

Bn
j = −

θυnj
2∆y

− υθ

(∆y)
2 (3.17)

Cn
j =

(
unj
)2

∆x
−

(1− θ) υnj unj+1 − unj−1

2∆y

+
υ (1− θ)

(
unj+1 − 2unj + unj−1

)
(∆y)

2

(3.18)

Figure 3.2: Flow chart for solving laminar incompressible
boundary layer on flat plate
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Continuity Equation:

υn+1
j − υn+1

j−1

∆y
+
un+1
j − unj + un+1

j−1 − unj−1

2∆x

= 0
(3.19)

CCn
j =

(
un+1
j − unj + un+1

j−1 − unj−1

2∆x

)
∆y (3.20)

υn+1
j = υn+1

j−1 − CC
n
j (3.21)

The data have been supplied to the computer pro-
gram using Mat lap technique and the results for
laminar steady incompressible flow over the flat
plate as shown in the flow chart on Figure 3.2,
where the theoretical results are shown in Figure
4.5 [a,b].

4. Results and Discussion

Figure 4.1 (a, b, c and d) show the velocity pro-
file over a rough flat plate. In all tested condi-
tions it found that the boundary layer profile has
a parabolic shape. The fluid particles at the flat
plate surface have zero velocity and they act as
a retardant to reduce velocity of adjacent par-
ticles in the vertical direction. The velocity of
the fluid increases as it released from surface drag
till reaches maximum value at the boundary layer
edge where the flow velocity is equal about 99%
of the free stream flow velocity (i.e., u=0.99U.).
It is concluded that, at any location of the rough
flat plate, the boundary layer thickness increases
with increasing the mass flow rate. From these
figures it can be observed that along the down-
stream distance , the magnitude of the velocity
decreased due to friction effect. From these fig-
ures it can be noticed that more elongation in
the velocity profile curve means higher boundary
layer thickness. To show the effect of mass flow
rate more accurate, the variation of flow velocity
along the flat plate surface are shown in Figure
4.1d.
Figure 4.2 (a ,b,c and d) shows the velocity profile
over a smooth flat plate. It can be seen that the
velocity profile has the same trend as that for the
rough surface, this means that the surface rough-
ness has no effect on the velocity profile shape.

By comparing the boundary thickness it can be
noticed that the boundary layer thickness in the
condition of rough surface is higher than that in
the case of smooth surface, this occurred mainly
due to friction at flow surface. Also at the same
vertical distance it can be seen that the velocity
magnitude in the smooth surface is higher than
that in rough surface condition due to low friction
degree in the smooth surface condition.
The effect of surface roughness is shown Figure
4.3(a, b, c and d) at different mass flow rates.
It can be seen that the smooth surface velocity
profile is more wider than that of rough surface
profile. The Figure shows that the rough bound-
ary layer thickness is bigger than that of smooth
surface boundary layer thickness and this mainly
occurred due to the drag force caused by the sur-
face. By comparing both rough and smooth sur-
face, it can be observed that a considerable effect
occurred due to surface roughness degree.
Figure 4.4 (a and b) shows the effect leading edge
distance on the boundary layer thickness. It can
be seen that the boundary layer thickness increases
with increasing the leading edge distance, i.e. the
boundary layer grows as the traveling distance is
increased and the curves tend to have a greater
tangent as velocity increases. Figure 4.5 (a and
b) shows the theoretical results of laminar bound-
ary layer thickness characteristics at different op-
erating parameters. Figure 4.5a shows the effect
leading edge distance on the boundary layer thick-
ness. The computer program obtained the same
trend of the boundary layer thickness as that ob-
tained experimentally. Logically there are some
deviation between the theoretical and experimen-
tal results which will be discussed in comparisons
graphs.
Figure 4.6 (a, b, c, and d) shows the compar-
isons of theoretical and experimental results of
laminar boundary layer thickness at different op-
erating parameters. It can be seen that the com-
parison was carried at different working parame-
ters such as free stream flow velocities, and dif-
ferent leading edge distances. Figure 4.5 proves
that good agreement was obtained between ex-
perimental and theoretical results. The average
of error values is less than 4.5%. The compar-
ison shows that the theoretical model has good
approximation in the range of the laminar flow,
more precisely in smooth surface application.
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(a) (b)

(c) (d)

Figure 4.1: Velocity profile over flat rough plate at different mass flow rates
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(a) (b)

(c) (d)

Figure 4.2: Velocity profile over flat smooth plate at different mass flow rates
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(a) (b)

(c) (d)

Figure 4.3: Effect surface roughness on velocity profile over flat plate at different mass flow rates
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(a) (b)

Figure 4.4: Effect of leading edge distance on boundary layer thickness

(a) (b)

Figure 4.5: Theoretical results of boundary layer thickness at different operating parameters
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(a) (b)

(c) (d)

Figure 4.6: Comparisons of theoretical and experimental results of boundary layer thickness at different operating
parameters
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5. Conclusion

The following points were concluded:

• At all tested conditions, the boundary layer
thickness increases with increasing the mass flow
rate i.e. ( free stream flow velocity ).

• The boundary layer thickness increases with in-
creasing the leading edge distance.

• The rough surface boundary layer thickness is
higher than smooth boundary layer thickness.

• The surface type i.e. smooth or rough has tha
major effect on the boundary layer thickness.
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